Journal of Public Health International

Journal of Public Health International

Current Issue Volume No: 2 Issue No: 2

Review-article Article Open Access
  • Available online freely Peer Reviewed
  • Structural Equation Modeling To Detect Predictors Of CD4 Cell Count Change Due To Long Term Antiretroviral Therapy Administered To HIV-Positive Adults At Felege Hiwot Teaching And Specialized Hospital, Bahir Dar, Ethiopia

    1 Dept. of statistics, Bahir Dar University, Ethiopia 

    Abstract

    Background

    The relationship between predictors and the variable of interest was estimated using a structural equation model which is used to predict latent variables. The main advantage of the SEM is the ability to estimate the direct and indirect pathways of the effect of the primary independent variable on the outcome, given sufficient sample sizes. Despite not directly modeling the mediated pathways, GLMMs excluding mediating variables performed well with respect to power, bias and coverage probability in modeling the total effect of the primary independent variables on the outcome. In longitudinal studies, data are collected from subjects at several time points. The main purpose of longitudinal analysis is to detecting the trends or trajectories of the variables of interest.

    Methods

    A longitudinal study was conducted on 792 adults living with HIV/AIDS who commenced HAART. Structural equation modeling was used to construct a model to detecting predictors of CD4 cell count change. The procedure was illustrated by applying it to longitudinal health-related quality-of-life data on HIV/AIDS patients, collected from September 2008 to August 2012 monthly for the first six months and quarterly for remaining study period.

    Results

    The result of current investigation indicates that CD4 cell count change was highly influenced by certain socio-demographic and clinical variables. Out of all the participants, 141 (82%) have been considered 100% adherent to antiretroviral therapy. Structural equation modeling has confirmed the direct effect that personality (decision-making and tolerance of frustration) has on motives to behave, or act accordingly, which was in turn directly related to medication adherence behaviors. In addition, these behaviors have had a direct and significant effect on viral load, as well as an indirect effect on CD4 cell count. The final model demonstrates the congruence between theory and data (x2/df. = 1.480, goodness of fit index = 0.97, adjusted goodness of fit index = 0.94, comparative fit index = 0.98, root mean square error of approximation = 0.05), accounting for 55.7% of the variance.

    Conclusions

    The results of this study support our theoretical model as a conceptual framework for the prediction of medication adherence behaviors in persons living with HIV/AIDS. Implications for designing, implementing, and evaluating intervention programs based on the model are to be discussed.

    Author Contributions
    Received Jan 20, 2019     Accepted Mar 19, 2020     Published Mar 30, 2020

    Copyright© 2020 Seyoum Tegegne Awoke.
    License
    Creative Commons License   This work is licensed under a Creative Commons Attribution 4.0 International License. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Competing interests

    The authors declare that they have n competing interests, which may have inappropriate influenced them in writing this article.

    Funding Interests:

    Citation:

    Seyoum Tegegne Awoke (2020) Structural Equation Modeling To Detect Predictors Of CD4 Cell Count Change Due To Long Term Antiretroviral Therapy Administered To HIV-Positive Adults At Felege Hiwot Teaching And Specialized Hospital, Bahir Dar, Ethiopia Journal of Public Health International. - 2(2):15-27
    DOI 10.14302/issn.2641-4538.jphi-19-2610

    Results

    Results

    The baseline characteristics of study variables are indicated in Table 1.

    Baseline socio-demographic and clinical variables of 792 patients in the study
    Variable Average No (%)
    Weight (kg) 62 (58-70) -
    Base line CD4 cells/ mm3 134 (113-180) -
    Age (years) 36 (28-48) -
    First month / initial CD4 cell count change/mm3 15.9 (12-26) -
    Sex Male   391 (49.4)
    Female   401 (50.6)
    Educational status no education   160 (20.2)
    Primary   205 (25.9)
    Secondary   273 (34.5)
    Tertiary   154 (19.4)
    Residence area Urban   468 (59.1)
    Rural   324 (40.9)
    Marital status Living with partner   355 (44.8)
    Living without Partner   437 (55.2)
    Level of income Low income (< 500 ETB per month)   355 (44.8)
    Middle income (5001-999 ETB per month)   346 (43.7)
    High income ( ≥ 1000ETB per month)   91 (11.5)
    WHO HIV stage Stage I   101 (12.8)
    Stage II   258 (32.6)
    Stage III   199 (25.1)
    Stage IV   234 (29.5)
    Disclosure Yes   575 (72.6)
    No   217 (27.4)
    Cell ownership yes   400 (50.5)
    No   392 (49.5)
    First monthHAART adherence Good   540 (68.2)
    Fair   160 (20.2)
    Poor   92 (11.6)

    As shown in Table 1, out of the sample of 792 patients, 40.9 % were rural residents, 50.6 % were females, 44.8 % were living with their partner, 72.6 % disclosed their disease to family members, and 50.5 % were owners of cell phones. Lastly, 68.2% of the patients had good adherence and the rest were non-adherent (Fair +Poor) patients. Few of patients (11.5%) were high income level and 20% of them had no education.

    Model fitting for CD4 cell count data using structural equation modelling

    One means of assessing the determinants of the change of CD4 cell count is Structural Equation Modelling (SEM). Considering the commonly significant covariates on the variable of interest on the previous chapters, let us apply structural equation modelling to see whether or not the significant variables found above are also significant in this case. In our case, all dependent and independent variables are manifest/observable variables. Let rectangles in Figure 1 represent the manifest variable and circles for errors that can be created during estimation of parameters26.

    Considering the current change of CD4 cell count as endogenous variable, the predictor variables (HAART adherence, weight, age, baseline CD4 cell count, visiting time and Cell phone ownership) found as significant variables from the previous chapters can be considered as exogenous variables. Since CD4 cell count results from the two previous results (prior one unit from the current and prior two units from the current) in transition model were significant for the current change, they had been included as predictor variables. Consider the first two lag variables (lag-2 and lag-1) as exogenous variable as shown in Figure 127.

    Single factor measurement model for CD4 cell count change for adult HIV patients

    In Figure 1, the change in current CD4 cell count at lag-2, CD4 cell count change at lag-1 and current CD4 cell count change were considered as endogenous variables whereas ownership of cell phone, baseline CD4 cell count, adherence, weight, age and visiting times were considered as exogenous variables. 01, 02, 03 are observed linkages with adherence to their endogenous variables (CD4 cell count change for lag-2, lag-1 and current CD4 cell count change) and 04, 05 , and 06 are linkages with weight to its endogenous variables. Similarly, let 07, 08 and 09 be linkages from age, 010, 011 and 012 be linkage with visiting times, 013 013, 014 and 015 are linkages with initial CD4 cell count and 016, 017 and 018 are linkages from ownership of cell phone. (Table 2)

    Tests of goodness- of- fit for saturated and null models
      RMSEA model GFI model
    RMSEA 95 % C.I P-value RMR GFI AGFI PGFI
    Saturated model 0.0320 -0.0002 0.0653 0.7820 0.0805 0.9973 0.9855  
    Null model 0.2970 0.3769 0.4047 0.0001 4.2453 0.4821 0.2896 0.4353

    The goodness-of-fit statistic is indicated in Table 1. The chi-square test statistics is not significant at 0.05 which indicates that the model is good and accepted28. The root mean square error approximation (RMSEA) was 0.00334 that is less than 0.05. The goodness-of-fit index (GFI) and adjusted goodness-of-fit index were 0.9973 and 0.9855 respectively. Such results indicate that the model was good to fit the data at 95% CI and gave, X215= 9.96, P-value = 0.09843.

    From Table 2 (RMSEA model), the p-value for default model is 0.7820 which indicates that there is no evidence for rejection of the null hypothesis that states the model is good. So, we have to choose the saturated model rather than the null model. (Table 3 and Table 4)

    Standardized regression weights for default model
      Estimate
    Current CD4 cell count change <------------ CD4 cell count change (lag-2) 0.62463
    Current CD4 cell count change <------------ CD4 cell count change (lag-1) 0.21497
    Current CD4 cell count change <------------------------------------ adherence 0.56231
    Current CD4 cell count change <-----------------------------------------weight 0.22354
    Current CD4 cell count change <---------------------------------------------- age 0.83452
    Current CD4 cell count change <-----------------------baseline CD4 cell count 0.35463
    Current CD4 cell count change <-------------------------------------Visiting times 0.21487
    Single factor measurement model for CD4 cell count
    Measurement coefficient S.E Z P-value 95% C.I
    Adherence <------- CD4 count change 1(const.)          
    Constant 96.31 1.38 74.5 <0.001 92.79 98.77
    Weight <------ CD4 count change 3.27 0.12 9.7 <0.001 1.95 5.52
    Constant 97.08 1.47 72.6 <0.001 94.42 102.44
    Age <------ CD4 count change 4.03 0.13 8.91 <0.001 1.81 7.45
    Constant 97.10 1.35 71.6 <0.001 94.44 99.76
    Baseline CD4count <------CD4 count change 1.05 0.61 11.42 <0.001 0.08 3.98
    Constant 45.77 5.88 75.43 <0.001 26.34 64.44
    Visiting time <------CD4 count change 1.02 0.51 10.42 <0.001 0.01 2.89
    Constant 60.77 5.88 97.43 <0.001 36.34 74.43
    Owner of phone <------CD4 count change 1.24 0.61 11.42 <0.001 0.07 3.98
    Constant 36.76 4.85 94.43 <0.001 22.34 92.43
    Lag-2 <------CD4 count change 1.14 0.54 34.32 0.012 0.02 3.35
    Constant 32.38 4.68 65.32 0.003 28.76 42.53
    Lag-1 <------ CD4 count change 1.07 0.84 43.42 0.012 0.01 4.45
    Constant 35.48 5.58 68.52 0.003 26.76 45.43
    Variance of E *weight 53.47 1.92     37.15 76.17
    Variance of E *age 34.25 9.81     23..36 58.33
    Variance of E* visiting times 96.15 67.62     54.84 98.61
    Variance of CD4 cell count 18.20 24.32     12.43 27.46

    (Table 5) indicated that current CD4 cell count change increased as adherence increased. Similarly, CD4 cell count change at these stages increased for patients having cell phone. In addition to predictors to CD4 cell count change, the previous two responses (CD4 cell count change at lag2 and lag1) had significant effect on the current CD4 cell count results. The expected log of CD4 cell count change increased as level of adherence increased. Likewise, for one unit increase of the expected log of CD4 cell count change at lag-2, the expected log of the current CD4 cell count change increased by 0.24 cells per mm3, keeping the others constant.

    Parameter estimation for saturated model in structural equation modelling
      Estimate S.E C.R P-value
    Adherence <--------CD4 cell count change at lag2 0.6546 0.0568 10.0462 ***
    Adherence<-------- CD4 cell count change at lag1 0.22497 0.0551 4.0839 ***
    Adherence <--------- current CD4 cell count change 0.28497 0.0451 4.0839 ***
    weight <------------- CD4 cell count change at lag2 0.58916 0.0558 10.5581 ***
    weight <------------- CD4 cell count change at lag1 0.38916 0.0458 8.5581 ***
    weight <-------------- current CD4 cell count change 0.38916 0.0458 8.5581 0.2312
    Age <------------------ CD4 cell count change at lag2 0.24762 0.0453 6.4352 ***
    Age <------------------ CD4 cell count change at lag1 0.83452 0.0874 6.3542 ***
    Age <------------------ Current CD4 cell count change 0.65483 0.4563 4.5433 ***
    Initial CD4<----------- CD4 cell count change at lag2 0.65463 0.0568 10.0462 ***
    Initial CD4<------------ CD4 cell count change at lag1 0.22487 0.0551 4.0839 ***
    Initial CD4<---------- Current CD4 cell count change 0.58916 0.0558 10.5581 ***
    Owner of Cell phone<---- CD4 cell count change at lag2 0.65326 0.0568 1.0462 ***
    Owner of Cell phone <-- CD4 cell count change at lag1 0.23497 0.0551 4.0839 ***
    Owner of Cell phone <-- Current CD4 cell count change 0.67916 0.0558 12.5581 ***
    CD4 count(lag-2) <------ CD4 cell count change (lag-1) 0.56326 0.05682 1.04618 ***
    CD4 count(lag-1) <----- current CD4 cell count change 0.32497 0.15409 4.06390 ***
    Covariance for saturated model        
    E1<------->E4 1.45324 0.34524 4.65421 ***
    E6<------->E7 0.65224 0.64824 4.65421 0.08532
    E2<------->E3 0.64327 .65482 3.12537 ***
    E6<------->E7 0.75412 .06831 2.3451 0.32130
    E3<------->E8 0.82453 .67543 3.45632 ***
    E3<------->E5 1.43271 .86541 2.54321 ***
    E5<------->E6 0.94231 .32107 0.97421 0.32172
    E2<------->E8 1.63261 .85321 2.54511 ***
    E1<------->E2 0.68261 .95321 0.84511 0.14522
    E4<------->E8 0.98212 .54132 3.42152 ***
    E7<------->E8 1.34252 1.22412 2.53214 ***
    E4<------->E5 0.86521 .86241 1.86912 0.08321
    E6<------->E8 -0.86312 .94321 1.86321 ***

    The correlation structure between E1<--->E4, E2<--->E3, E3<--->E5, E2<--->E8, E6<--->E8, E4<--->E8, E7<--->E8 and E3<--->E8 had significant effect on the relationship between endogenous and exogenous variables. In order to assess estimated value of linkage for each covariate on CD4 cell count change, standardized regression weights and the structural equation model are needed.

    Discussion

    Discussion

    In current investigation, the structural equation models for analysis of longitudinal data on univariate models of observable variables (CD4 cell count change) that are conditional to the other variables (time-varying or time invariant) were reviewed. Hence, in the paper keeping the statistical theory to be a practical guide for analysing longitudinal data, SEM applied for analysis of longitudinal data(CD4 cell count change and its predictors). However, considering the readers concept and prior knowledge of SEM, the investigators largely avoid dwelling on the basis of SEM. Although common software packages such as SAS and R have the capability to run SEMs, software designed specifically for SEMs 22 may be more intuitive and user-friendly in model specification, particularly in the development of highly complex models.

    The current study examines one specific setting of mediated longitudinal data. Other situations with different data structures where mediation is present could also be explored, e.g. situations where the mediator and the primary independent variable as well as the outcome are repeatedly measured, categorical outcomes, and settings with more complex pathways between variables. In addition, we specifically explored the question of whether the LMM performs sufficiently in a setting favorable to the SEM. Future studies examining broader settings where the data arise from non-SEMs would provide further insight into the use of the LMM and SEM in mediated longitudinal settings. First, we found the factor loadings and intercepts of HD (health distress) and EF (energy and fatigue) not to be invariant across measurement occasions and, second, we found direct effects of CD4-cell count on EF and RF (role-functioning)29. The first two findings of measurement bias are considered as response shift by definition, as the measurement invariance is violated by the time of the measurement occasion. However, upon inspecting the HD and EF parameter estimates (Table 2) there did not appear to be an obvious substantive explanation for the changes in the factor loadings of HD. The other two findings of measurement bias are considered as response shift only if they vary with time. The bias in EF with respect to CD4-cell count is consistent over time and therefore not considered as response shift 30. The bias in RF with respect to CD4-cell count did vary with time, but again, it was difficult to provide a substantive explanation for this so-called response shift 31. Perhaps some of our results are chance findings, despite our best attempts to guard against such findings.

    The Bonferroni adjustment of the level of significance guards against inflation of the family-wise error rate, but the chi-square difference test can still be affected by model complexity and sample size 32. In a simulation study, Cheung and Rensvold (2002) considered various alternatives to the chi-square difference test for testing across group constraints in multi-group factor analysis, and recommended inspection of differences in Bentler s (1990) comparative fit index (among others). In our longitudinal factor analysis, we complemented the chi-square ifferences with ECVI differences, really only in order to provide additional information about the necessity of further modifications that cannot be substantively justified. In the present analyses, the ECVI differences generally agreed with the chi-square difference tests at Bonferroni adjusted levels of significance. One notable exception was that according to the 90% confidence interval of the ECVI difference, the fit of Models 2.2 and 2F was essentially equivalent, suggesting that constraints on EF factor loadings and intercepts could have been retained.

    It should be noted that most response shift researchers in substantive areas of psychology contend that response shifts are the result of some catalyst event, such as an intervention in educational research (Howard et al. 1979), or a health state change in medical research (Sprangers and Schwartz 1999). In the HRQL study of HIV/AIDS patients, there is not a well defined event that all respondents have in common, other than having been diagnosed with HIV or AIDS some time ago. However, the time since diagnosis and the time on HAART vary greatly across patients and cannot be considered true catalysts. The one thing all patients have in common is that they participate in the HRQL study, and that they complete HRQL tests every half year. The test taking itself can have an effect on their response behaviour, which may change with time. The patients may become more accustomed to both their disease and taking the test, which perhaps induces a response shift. It should also be noted that most work on response shift in substantive psychological research was not aimed at investigating measurement invariance, but rather at explaining paradoxical intervention effects. Seeing that research into response shift was hampered by researchers having different conceptions of response shift, Oort (2005b) proposed to formally define response shift as a special case of measurement bias, although some researchers may still have another perspective on response shift (Oort et al. 2009).

    As is illustrated by the empirical example, Step 2 and Step 3 of the detection procedure are laborious and time consuming. Especially if the numbers of observed variables and exogenous variables are large, these two steps involve the fitting of numerous models, in order to evaluate the chi-difference tests. An advantage of using modification indices is that, within each iteration, the researcher only has to fit a single model. Therefore, although perhaps less sound (Kaplan 1990), we explored the use of the modification index as an alternative to the global tests with multiple degrees of freedom.

    When we evaluated the modification indices with the Bonferroni adjusted levels of significance, none of the findings were significant because of the large number of tests under consideration (e.g. 120 in Step 2). When testing at less conservative levels of significance, for example by considering tests of intercept constraints first and factor loading constraints second, or by simply raising the family-wise level of significance, there was a number of modification indices that reached significance.

    However, as multiple modification indices were about equally large, the choice of which constraint to remove first seemed arbitrary, yet highly consequential for the removal of constraints in subsequent iterations, leading to very different conclusions. In addition, we also had to be careful not to run into constraint interactions. Still, the most important problem with relying on modification indices and less conservative testing was that many of the modifications were difficult to interpret and that the number of iterations grew very large. Saris et al. (2009) suggest only modifying models if the modification indices are associated either with moderate (instead of high) statistical power or with substantial expected parameter changes. When statistical power is high, one can only rely on substantive arguments for modification (ibidem), which we did, as in the present analyses the power to find medium sized differences was consistently above 99%.

    In such situations, the decision making becomes increasingly subjective, as researchers will have to base their decisions between modifications and when to stop modifications on the interpretability of the different modifications. It is therefore highly likely that different researchers, with different substantive knowledge and different interpretation skills, will end up with different conclusions when analysing the same data. As can be seen from the procedure using modification indices, subjectivity in measurement bias detection influences whether and where bias is found. Notall researchers may want to test every possible combination of tenable equality constraints.

    When this is the case, a priori hypotheses driven by theory should be stated before analysis and only these tests should be conducted. Under these circumstances, chance findings may further be reduced and more generalisable results found.

    The problems associated with devising an objective procedure for measurement bias detection is common to specification searches in general. Bollen (2000): Modelling strategies are subject to debate for virtually all statistical procedures. Witness the sharp disagreements over stepwise regression, the interpretation of clusters in cluster analysis, or the identification of outliers and influential points. The largely objective basis of statistical algorithms does not remove the need for human judgment in their implementation. Similarly, when investigating measurement invariance, it is impossible to completely remove the element of human judgement. This is certainly true for the substantive interpretation of apparent measurement bias. However, we think that the procedure presented in this paper, with its safeguards against chance findings, at least helps to more objectively decide which measurements are biased and which are not.

    Ethical Consideration

    Ethical clearance certificate had been obtained from two universities namely Bahir Dar University, Ethiopia with Ref ≠ RCS/1412/2006 and University of South Africa (UNISA), South Africa, Ref ≠ : 2015-ssr-ERC_006 . We can attach the ethical clearances certificate up on request.

    Consent for Publication

    This manuscript has not been published elsewhere and is not under consideration by another journal.

    Availability of Data and Materials

    The secondary data used for current investigation is available with the corresponding author.

    Conclusion

    Affiliations:
    Affiliations: