Abstract
Pesticides are applied in agricultural fields for controlling pest population to achieve crop protection. But they cause damage to nontarget organisms and affect the quality of environment including water, air and soil. The present study has been designed to test the efficiency of
(
Author Contributions
Copyright© 2020
S Vaishali, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Pesticides are used to prevent the plants from pests. They are most commonly abundant environmental chemicals present in soil, water, food and so on, due to their extensive applications in agriculture. Pesticides applied in the soil affect the fertility and productivity of soil and sometimes cause pollution in aquatic ecosystems by entering into them from the agricultural fields making water unsuitable for human consumption. They persist in the environment for a long period of time, which causes severe problems to the environment and also to human beings. Therefore, it is inevitable to discover appropriate strategies to overcome the problems caused by pesticides The use of bioremediation technology to degrade organic contaminants including hazardous pesticides has achieved a great deal of attention in recent years. Research has revealed that microbial degradation process to detoxify pesticide contaminants can be effectively used to overcome the pollution problems Malathion is a non-systemic pesticide and one of the world's most widespread general-purpose organophosphates. It exhibits high selective toxicity and is mostly used in the control of sucking and chewing insects on fruits and vegetables and vector mosquitoes and flies. It is available in emulsifiable concentrate, wettable powder, and ultra low volume formulations. It is an acetyl cholinesterase inhibitor, and so acetylcholine accumulates causing over-stimulation and nervous collapse in human beings. It is rapidly absorbed through the gastrointestinal tract, skin, mucous membranes, and lungs Malathion persists in soil with reported field half lives of 1 to 25 days. In aquatic systems, the major degradation pathway for malathion is through hydrolysis. Hydrolysis occurs when the malathion molecule chemically reacts with water. It has been demonstrated that the rate of hydrolysis increases with increasing temperature and alkalinity of the water. Half lives for malathion in water ranges from 1.5 days to 21 weeks. Photolysis, or degradation by light, may provide significant breakdown in surface waters exposed to large amounts of solar radiation. It was found that malathion was not used as a primary source of carbon for the bacteria. However, evidence of enzymatic by-products indicated that the bacteria used malathion as a secondary source of carbon. These enzymatic hydrolysis by-products included mono-carboxylic acid and di-carboxylic acid derivatives of malathion
Materials And Methods
Malathion, an orthophosphate pesticide was selected for the present study based on its broad range of application in the agricultural fields and present market trends. 1 ml of sample was taken in a flask and 1 ml of ammonium molybdate and 3 drops of stannous chloride solution were added and kept for 10 minutes for the development of blue colour and the absorbance was recorded in a colorimeter at 650 nm. Distilled water blank was subjected in a similar manner. Similarly the standard phosphorus solution of different strengths was processed and standard curve was plotted between absorbance and the concentrations of standard phosphorus solution. The orthophosphate content of the sample was deduced by comparing its absorbance with the standard curve. pH was analyzed every 6 hours up to 30 hours of treatment for the samples from different concentrations of malathion using pH meter and readings were recorded. Growth was measured as turbidity at 600 nm in 6 hours interval for 30 hours. The efficiency of pesticide degrading ability of the bacterial strain was tested by providing different carbon sources like fructose, glycerol, lactose, maltose and sucrose of 1% concentration in minimal medium containing 150 ppm concentration of malathion. 150 ppm was chosen for further experiments based on the changes in orthophosphate released, pH and turbidity. The flasks were incubated at 37°C and orthophosphate released was estimated every 6 hours up to 30 hours. The seed cultures of the strain were grown in nutrient broth and the cells were harvested by centrifugation at 10,000 rpm for 10 minutes and the cells were washed and suspended in 0.1% NaCl. Then 3.5% of sodium alginate was added to the cell suspension and mixed thoroughly without forming any air bubble in the slurry. The slurry containing the cells was extended as drops through a tube (2 mm diameter) into 4% CaCl2 solution. The drops formed into spherical beads of 2 mm size. The gel beads were kept in 4% CaCl2 solution at 5°C for about an hour for complete gelation. Then the beads were washed with sterile distilled water and used for malathion degradation study The samples from 150 ppm concentration of malathion were centrifuged at 6 hours interval for 30 hours and the clear supernatant was used for spectral analysis. The clear supernatant was scanned from 200 to 600 nm in a spectrophotometer (Elico SL: 159) and analysed for specific absorption in the spectrum. The samples from 150 ppm concentration of malathion before and after 30 hours of treatment period were subjected to HPLC analysis by UV detection. Two way analysis of variance (ANOVA) was performed on the factors like orthophosphate released, turbidity, and pH for the two variables namely treatment period and malathion concentration using MS-Excel package. Variations due to treatment period or malathion concentration were considered statistically significant when the calculated F value was greater than the table value at 5% level.
Results
Malathion, one of the world's most wide-spread general-purpose organophosphorus insecticides with high selective toxicity is mostly used for the control of sucking and chewing insects and for controlling mosquitoes and flies. Microbial cleavage is responsible for the degradation organophosphorus compounds. To make sound pest management decisions, pesticide users and resource managers should have an understanding of the fate of pesticides in the environment. Hydrolytic cleavage of organophosphate bond is considered as the initial step in the metabolism of organophosphates. But the hydrolytic reaction did not supply energy required for the growth of the organisms and only the degradation products from these pesticides appear to serve as energy for growth and proliferation of microorganisms Effective degradation of malathion by Turbidity measurement ( The use of immobilized enzymes in large-scale industrial processes has recently progressed from the stage of theoretical consideration into reality. Immobilized pesticide hydrolyzing enzymes conceivably could be used for pesticide detoxification creating a continuous or discontinuous, economical, safe method, usable in either large or small-scale systems Supplementation of carbon sources to the minimal medium enhanced degradation process where Kannan and Vanitha Pesticide degradation ability of tested samples indicated statistical difference in degradation process in sediment and in water
Factor
Source ofVariation
SS
df
MS
CalculatedF - value
Table valueat 5% level
Level ofsignificance
Orthophosphate released
Treatment Period
155.4
4
38.86
3.562
3.007
Significant P‹ 0.05
Malathion Concentration
1648.6
4
412.0
37.76
3.007
Significant P‹ 0.05
pH
Treatment Period
0.176
4
0.044
12.18
2.866
Significant P‹ 0.05
Malathion Concentration
0.345
4
0.069
19.09
2.711
Significant P‹ 0.05
Turbidity
Treatment Period
1.74
4
0.434
57.41
3.007
Significant P‹ 0.05
Malathion Concentration
0.393
4
0.098
13.01
3.007
Significant P‹ 0.05
Conclusion
The selected strain was able to degrade malathion effectively upto 200 ppm and the immobilized cells can perform better than that of free cells. In the case of live cells supplementation with sucrose and fructose exhibited better results. The authors thank the authorities of The American College, Madurai, Tamil Nadu, India, for the facilities and encouragement.