Abstract
Genetics alone cannot thoroughly expound the environmental impact on the molecular complexity of the endocrine system. Epigenetic-induced alteration in gene expression has emerged as a way in which environmental compounds may exert endocrine effects. The environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to, on a daily basis. Epigenetic mechanisms, mainly the methylation of DNA and the modification of histones, lead to differentiated activation and deactivation of genome domains creating phenotype plasticity and divergent endocrine function among populations and individuals, as well. The issues examined in the present review are related to environmental epigenetics, and more precisely, the epigenetic-mediated modulation and relevance of endocrine disrupting chemicals, focusing on three broad aspects: 1) persistence of EDs, 2) their major hormonal effects and 3) the potential of compounds previously considered as endocrine disruptors to induce epigenetic effects. Evidence suggests that environmental exposures notably impact expression of endocrine-related genes and, thus, affect clinical endocrine outcomes.
Author Contributions
Copyright© 2018
Alatsathianos Ioannis.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
There are plenty definitions that attempt to explain what an “Endocrine disruptor” (ED) is. The United States Environmental Protection Agency (US EPA), the World Health Organisation (WHO), the European Union (EU), a joint expert group formed by representatives of the German Bundesamt fuer Risikobewertung (BfR) and health authorities in the United Kingdom (UK-BfR) have proposed similar definitions all of which are considered as appropriate The mammalian endocrine system consists of a number of distinct hormonal systems including hormones derived from the thyroid gland or other organs such as pancreas, or even brain. Hormonal activity should not necessarily be considered as beneficial or harmful. Their biological contribution can be neutral, as well EDs steroid function and their androgenic, estrogenic and antiandrogenic activity has been investigated further than their ability to disrupt signaling pathways regulated by hormones of a different nature such as peptide hormones EDs can act on the epigenome in various ways Genistein is a well-studied phytoestrogen and its impact on DNA methyltransferases (DNMTs) has been found to be among its epigenome modifying abilities Polychlorinated biphenyls (PCBs), which have a number of uses such as Many genes are known to be hormonally regulated, including the family of kallikrein-related peptidases (KLKs)