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Abstract 

 A model of a Quantum recurrence in the dynamics of an elementary physical vacuum cell within the 

framework of four coupled Shrodinger equations has been suggested. The model of an elementary vacuum cell 

shows that a Quantum recurrence which represents the dynamics of virtual transformations in the cell, 

qualitatively differs from that of Poincare and the Fermi-Pasta-Ulam. Whereas these recurrences develop in time 

or space, the Quantum recurrence develops in a sequence of Fourier images represented by non exponentially 

separating functions. The sequence experiences random energy additions but no exponential separation occurs. 

The Quantum recurrence can be defined as the most frequent array of Fourier images that appear in a certain 

quantum system during a period of its observation. Different scenarios of the Fourier images sequences 

interpreted as bosons (electron and positron) and fermions (photons) apearing in the solutions of the model 

demonstrate that during some periods of its observation they become indistinguishable. The quantum dynamics 

of every physical vacuum cell depends on the dynamics of many other vacuum cells interacting with it, thus the 

quasi periodicity (during the period of observation) of the Fourier images recurrence can have infinite periods of 

time and space and the amplitudes of the Fourier images can vary many orders in their magnitudes. Such 

recurrence times does not correspond even roughly to the Poincare recurrence time of an isolated macroscopic 

system. It reminds the behavior of spatially coupled standard mappings with different parameters. The amount 

of energy in the physical vacuum is infinite but extracting a part of it and converting, it into a time-space form 

requires a process of periodical transfer of the reversible microscopic system dynamics into that of a macroscopic 

system. This process can be realized through a resonant interaction between the classical and quantum 

recurrences developing in these two systems. However, a technical realization of this problem is problematic. 
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Introduction 

 After Poincare had stated his classical form of a 

recurrence when both an amplitude and a phase of the 

system must recur after a certain period of time to their 

initial states [1] Fermi, Pasta and Ulam discovered in a 

system of non linearly coupled oscillators [2] a much 

more sophisticated form of recurrence when the 

recurrences to the initial states were not identical but 

manifested the appearance of stochasticity in the 

process of energy regrouping in a sequence of different 

recurrences. Its further studies [3,4] have induced a 

following theoretical and experimental research aimed at 

a search for specific recurrence properties in quantum 

systems.  

  In a quantum case, the notion of a phase 

space trajectory loses its meaning and so does the 

notion of the Lyapunov exponent, which measures the 

separations between trajectories [5]. When a discrete 

energy spectrum is present, the exponential separation 

is excluded even for expectation values of observables, 

on time scale on which level spacings are resolvable. 

The dynamics here is characterized by quasiperiodicity, 

i.e. recurrences rather than chaos in the classical sense. 

In contrast to classical chaos, quantum mechanical 

regular motion cannot be characterized by high 

sensitivity to small changes of initial conditions, Due to 

unitarity of quantum dynamics, the overlap of two wave 

functions remains time independent, provided the time 

dependence of both wave functions is generated by the 

same Hamiltonian. For periodically driven systems, the 

Hamiltonian has a variable parameter. All these are 

generically nonintegrable classically. However, in case of 

a kicked rotator [5] even under conditions of fully 

developed classical chaos it does not display the energy 

level repulsion. The kinetic energy and hence the 

quantum mechanical momentum uncertainty does not 

follow the classical diffusive growth indefinitely. After a 

certain break time the quantum mean enters a mode of 

quasiperiodic behavior. It brings to the idea that 

classical and quantum recurrence behaviors should look 

different.  

Model                       

We consider a possible existence of a quantum 

recurrence in a model of the following virtual reaction 

taking place in the physical vacuum: 

                                              

              (1) 

Equation (1) describes a reversible 

electromagnetic formation of an electron-positron couple 

from two photons together with electron-positron 

annihilation giving a birth to two photons. 

  We discuss the usage of Anderson's model of a 

particle whose possible locations are the equidistant 

sites of a one-dimensional chain [6]. In our case, these 

are electron or positron in (1). At each site a random 

potential Vm from neighboring reactions acts and the 

hopping of the particle from one site to its r-th neighbor 

is described by a hopping amplitude Wr. The probability 

amplitude pm for finding the particle on the m-th site 

obeys the Shrodinger equation [6]: 

           (2) 

 Consider if Vm are random numbers 

uncorrelated from site to site and distributed with a 

density ρ(Vm). The hopping amplitudes Wr, in contrast, 

will be taken to be nonrandom and to decrease fast for 

hops of increasing length r. As it was shown [5,7] this 

case can be reduced to the standard mapping form. On 

the other hand, the process of interaction between a 

photon and electron or positron can be interpreted as a 

random one, which represents either penetrating of a 

photon through or reflecting from a potential barrier of 

the electron or positron field. That brings to the 

temporal form of coupled Shrodinger equations:          

     (3) 

Where ψph+ is the amplitude  that photon will 

tunnel the barrier and ψph- is the amplitude that a 

photon will be reflected from the barrier.                                    

K –characterizes the potential barrier. 

  The system (3) was used for a description of 

the Josephson junction dynamics [8].The process 

described by (3) also can be interpreted as a kicked 

rotator and can be reduced to the standard mapping 
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form. Together with this some popular examples of 

chaos are of this type [9]  

  Summing up one can see that the two 

quantum problems (2) and (3) can be reduced to the 

standard mapping form. In the paper [10] there was 

suggested a model of the Fermi-Pasta-Ulam recurrence 

within the framework of two coupled high and low 

frequency standard mappings. This approach looks 

perspective for describing recurrences in quantum 

systems just like (1). Since the vacuum cell (1) is under 

the influence of similar cells the processes of the energy 

addition to and subtraction  from the cell have to be 

included into the model.  For this purpose, the Pippard's 

idea about the Shrodinger equation with a complex 

potential has been used [11]. He suggested the 

description of a particle moving in a potential field: -iV n    

through the following form of the Shrodinger equation: 

             (4) 

If ψ = 0 when  x=0 and  x=a, for an eigenvalue 

with a number n for which ψn = sin(nπ/a), a following 

equality must be fulfilled:  

 Therefore a full wave function:                                 

possesses a dissipation proportional to:  

An impulse response of this system, which 

corresponds to an addition of the other eigenvalue 

states after the impulse,  in a general case (due to such 

members as ψm
*ψn ) has the members varying as                   

and describing the oscillations at the 

frequency of beatings and decaying  as If to take 

the dimensions of electron and positron in a coupled 

state (1) as symmetrical ones (-a+a), their wave 

functions can be described within the framework of 

coupled spatial Shrodinger equations having different 

directions of a spatial variable and having random 

potentials reflecting the influence of other cells like (1). 

Two coupled photons in (1) are described within the 

framework of coupled temporal Shrodinger equations (3) 

having different directions of a time variable and also 

having random potentials. The link between the two 

couples is realized through a mutual parametric 

excitation by the differences between the wave 

functions of electron and positron and that of between 

the two photons. The differences have opposite signs in 

the coupled couples of the Shrodinger equations 

because of mentioned opposite directions of a spatial 

and temporal coordinates there. Since the number of the 

virtual reactions similar to (1) is infinite and they are 

interconnected through random potentials, we have to 

insert them into the coupled Shrodinger equations. 

Generally, the energy damping-increasing process is 

interpreted as a resonant chaotically reversible exchange 

of energy between the vacuum cells like (1). 

 Accounting all mentioned the reaction (1) can 

be described by four coupled Shrodinger equations:              

 

 

 

 

 

 

Where ψ1 - is the wave function of electron in (1), ψ2 - is 

the  wave function of the first  photon in (1), ψ3 - is the 

wave function of the second photon in (1), ψ4 - is the 

wave function of a positron in (1). E1,E2,E3,E4 are 

random magnitudes of energy which correspond to the 

chaotically reversible exchange of energy between the 

vacuum cells. The multiplied wave function members in 

(1) reflect the non linear interaction processes. 

Vrandom1,Vrandom2,Vrandom3,Vrandom4 are random potentials. 

For numerical analysis the system (3) was 

reduced to four coupled differential equations of the 

second order:                                                          
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Where e(t),p(t) correspond to the electron and positron 

wave functions ψ1, ψ4 in (5), and h(t),r(t) correspond to 

the wave functions of two photons ψ2, ψ3 in (5); 

R1, R4 are random functions distributed within 

the interval (-1,1)  corresponding  to the positive and 

negative dispersion processes in the first and fourth 

equations in (5) having place due to energy interactions 

of electrons and positrons with other cells like (1); R2, R3 

are random functions distributed within the                        

interval (-1,1) corresponding to the dissipation processes 

in the second and third equations in (5) having place 

due to resonant interactions of photons with other cells 

like (1) [11]; A1,A2,A3,A4 are random functions 

distributed within the interval (0,1) corresponding to the 

random potentials Vrandom1,Vrandom2,Vrandom3,Vrandom4   in 

(5); C1, C2, C3, C4 are positive constants. Spatial and 

temporal symmetries in (5) are realized in (6) through a 

symmetrical resulting Fourier transform image of the 

functions e, p, h, r in relation to the frequency axis 

(consequence of aliasing); ω1 corresponds to the spatial 

frequency in Eq. 1,4 in (5); ω2 corresponds to the 

temporal frequency in Eq. 2,3 in (5). To get the ratio 

between ω2  and ω1 we can equalize the energy for both 

spatial and temporal Shrodinger equations in (5).  

Accounting that the electron and positron radius  

re,p = 2.8*10-13cm, temporal frequency/energy = 

2.42*1014 Hz/e.v., spatial frequency/energy= 8.06*103 

cm-1/e.v.,and considering the length of spatial waves 

4*re,p if an electron and positron are next to each other 

we can get the ratio between the temporal frequency  

ω2 in (5) and the spatial frequency ω1 in (5): 

 
Accounting a quantum character of the 

dynamics in the cell (1) the initial conditions for the 

functions e, p, h, r were taken random. 

Numerical Study of the Model    

A factual opposite direction of spatial (Eq.1,4) 

and temporal (Eq.2,3) coordinates in the system (5) 

brings the numerical analysis of the system (6) to the 

statistical observing of the Fourier image similarities 

appearing quasi periodically in multiple runs of the 

computer program during the solving process of the 

system (6). Since the potentials, dissipative members 

and initial conditions in (6) were random every run gave 

different Fourier images. A few hundred runs coverage 

allowed revealing the most frequent sequences of the 

Fourier images appearing quasi periodically in the results 

of computer analysis of the system (6) and to give them 

interpretations. (Figure 1-24) 

 One more numerical experiment was aimed at a 

possible application of the mathematical model. For that 

purpose all random functions R1, R2, R3, R4 in (6) were 

substituted by positive constants. The result of this 

artificial situation is given in (Figure 25-28). 

Conclusions 

The obtained numerical results allowed making 

the following conclusions: 

1. The model of an elementary vacuum cell shows that a 

Quantum recurrence which represents the dynamics of 

virtual transformations in the cell, qualitatively differs 

from that of Poincare and the Fermi-Pasta-Ulam. 

Whereas these recurrences develop in time or space, the 

Quantum recurrence develops in a sequence of Fourier 

images represented by non exponentially separating 

functions. The sequence experiences random energy 

additions but no exponential separation occurs. 

2. The Quantum recurrence can be defined as the most 

frequent array of Fourier images that appear in a certain 

quantum system during a period of its observation. 

3. Different scenarios of the Fourier images sequences 

interpreted as bosons (electron and positron) and 

fermions (photons) apearing in the solutions of  the 

model demonstrate that during some periods of its 

observation they become indistinguishable. 

4. The quantum dynamics of every vacuum cell depends 

on the dynamics of many other vacuum cells interacting 

with it, thus the quasi periodicity (during the period of 

observation) of the Fourier images recurrence can have 

infinite periods of time and space and the amplitudes of 

the Fourier images can vary  many orders in their 

magnitudes. Such recurrence times does not correspond 

even roughly to the Poincare recurrence time of an 

isolated macroscopic system. It reminds the behavior of 

spatially coupled standard mappings with different 

parameters. 

 The amount of energy in the physical vacuum is 

infinite but extracting a part of it and converting, it into 
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Figure 1. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the               

functions e and p interpreted as a beginning of 

the annihilation process. Vertical axis:             

amplitude, horizontal axis: number of steps. 

Units conditional. 
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Figure 2. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions h 

and r interpreted as a beginning of the two               

photons forming process. Vertical axis:                       

amplitude, horizontal axis: number of steps. Units    

conditional. 
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Figure 3. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions h 

and r interpreted as a beginning of the two               

photons forming process. Vertical axis:                       

amplitude, horizontal axis: number of steps. 

Units    conditional. 
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Figure 4. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the               

functions e and p interpreted as a beginning of 

the annihilation process. Vertical axis:             

amplitude, horizontal axis: number of steps. 

Units conditional. 
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Figure 5. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as a continuation of the 

electron and positron annihilation process.       

Vertical axis: amplitude, horizontal axis:                

number of steps. Units conditional. 
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Figure 6. Symmetrical (relatively the centre of           

horizontal axis) Fourier images of the function 

h interpreted as a multiphoton forming                  

process. Vertical axis: amplitude, horizontal 

axis: number of steps. Units conditional. 
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Figure 7. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the function  

r interpreted as a completion of the two            

photons forming process. Vertical axis:              

amplitude, horizontal axis: number of steps. 

Units conditional. 

Figure 8. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as a continuation of the 

electron and positron annihilation process.       

Vertical axis: amplitude, horizontal axis:                

number of steps. Units conditional. 
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Figure 9. Symmetrical (relatively the centre 

of horizontal axis) Fourier images of the 

functions e and p interpreted as a beginning 

of the two photon interaction process.            

Vertical axis: amplitude, horizontal axis: 

number of steps. Units conditional. 
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Figure 10. Symmetrical (relatively the centre 

of horizontal axis) Fourier images of the 

functions h and r interpreted as a                   

beginning of the two photon interaction              

process. Vertical axis: amplitude, horizontal 

axis: number of steps. Units conditional. 
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Figure 11. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions h 

and r interpreted as a beginning of the two             

photon interaction process. Vertical axis:              

amplitude, horizontal axis: number of steps. Units 

conditional. 
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Figure 12. Symmetrical (relatively the  centre 

of horizontal axis) Fourier images of the             

functions e and p interpreted as a beginning of 

the two photon interaction process. Vertical 

axis: amplitude, horizontal axis: number of 

steps. Units conditional. 
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Figure 13. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as an interaction process 

between electron, positron and photons.               

Vertical axis: amplitude, horizontal axis:             

number of steps. Units conditional. 
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Figure 14. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

h and r interpreted as an interaction process 

between photons and electron, positron.              

Vertical axis: amplitude, horizontal axis:            

number of steps. Units conditional. 
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Figure 15. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions h 

and r interpreted as an interaction process                

between photons and electron, positron.              

Vertical axis: amplitude, horizontal axis:            

number of steps. Units conditional. 
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Figure 16. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as an interaction process 

between electron, positron and photons.               

Vertical axis: amplitude, horizontal axis:             

number of steps. Units conditional. 
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Figure 17. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as a beginning of the            

electron-positron couple forming process.           

Vertical axis: amplitude, horizontal axis:              

number of steps. Units conditional. 

Figure 18. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

h and r interpreted as a beginning of the two 

photon coupling process which results in a 

forming of the electron-positron couple.                  

Vertical axis: amplitude, horizontal axis:             

number of steps. Units conditional. 
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Figure 19. Symmetrical (relatively the centre 

of horizontal axis) Fourier images of the             

functions h and r interpreted as a beginning of 

the two photon coupling process which results 

in a forming of the electron-positron couple.                    

Vertical axis: amplitude, horizontal axis:             

number of steps. Units conditional. 
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Figure 20. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as a beginning of the            

electron-positron couple forming process.           

Vertical axis: amplitude, horizontal axis:              

number of steps. Units conditional. 
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Figure 21. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the function 

e interpreted as a beginning of the                

electron-positron wave functions overlapping 

process. Vertical axis: amplitude, horizontal 

axis: number of steps. Units conditional. 
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Figure 22. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

h and r interpreted as an energy levels forming 

process as a result of the photons confinement 

in the overlapped electron-positron wave              

functions. Vertical axis: amplitude, horizontal 

axis: number of steps. Units conditional. 
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Figure 23. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions h 

and r interpreted as an energy levels forming 

process as a result of the photons confinement in 

the overlapped electron-positron wave functions. 

Vertical axis: amplitude, horizontal axis: number 

of steps. Units conditional. 
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Figure 24. Symmetrical (relatively the centre 

of horizontal axis) Fourier images of the 

function p interpreted as a middle of the 

electron-positron wave functions overlapping 

process. Vertical axis: amplitude, horizontal 

axis: number of steps. Units conditional. 
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Figure 27. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

h and r interpreted as a middle of the two     

photons forming process. The numerical study 

was carried out under constant (not random) 

positive dissipative coefficients R1, R2, R3, R4 in 

(6). Vertical axis: amplitude, horizontal axis: 

number of steps. Units conditional. 
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Figure 28. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

e and p interpreted as a beginning of the                   

annihilation process. The numerical study was 

carried out under constant (not random)                  

positive dissipative coefficients R1, R2, R3, R4 in 

(6).Vertical axis :amplitude, horizontal axis: 

number of steps. Units conditional. 
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Figure 25. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions e 

and p interpreted as a beginning of the                   

annihilation process. The numerical study was 

carried out under constant (not random)                  

positive dissipative coefficients R1, R2, R3, R4 in 

(6).Vertical axis :amplitude, horizontal axis:   

number of steps. Units conditional. 

200 400 600 800 1000

2

4

6

8

Figure 26. Symmetrical (relatively the centre of 

horizontal axis) Fourier images of the functions 

h and r interpreted as a middle of the two     

photons forming process. The numerical study 

was carried out under constant (not random) 

positive dissipative coefficients R1, R2, R3, R4 in 

(6). Vertical axis: amplitude, horizontal axis: 

number of steps. Units conditional. 
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a time-space form requires a process of periodical 

transfer of the reversible microscopic system dynamics 

into that of a macroscopic system. This process can be 

realized through a resonant interaction between the 

classical and quantum recurrences [12] developing in 

these two systems. 
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